Friday, September 13, 2013

Debunking the Paleo Diet: Scam or Fad-diet? by Christina Warinner at TEDx- Caveman Diet Review


Paleo Diet or Caveman Diet Review

TED Fellow Christina Warinner is an expert on ancient diets. So how much of the diet fad the "Paleo Diet" is based on an actual Paleolithic diet? The answer is not really any of it.

Dr. Christina Warinner has excavated around the world, from the Maya jungles of Belize to the Himalayan mountains of Nepal, and she is pioneering the biomolecular investigation of archaeological dental calculus (tartar) to study long-term trends in human health and diet. She is a 2012 TED Fellow, and her work has been featured in Wired UK, the Observer,, Der Freitag, and Sveriges TV. She obtained her Ph.D. from Harvard University in 2010, specializing in ancient DNA analysis and paleodietary reconstruction.

What Is The Paleo Diet? - The Paleo Diet Explained

Here the world's #1 expert in Paleo Diet, professor Loren Cordain, explains what you need to know and answers common questions. For example: Is Paleo always low carb? What's wrong with vegan diets? What single dairy product is ok to eat?

A. The Paleo Diet

The paleolithic diet (abbreviated paleo diet or paleodiet), also popularly referred to as the caveman diet, Stone Age diet and hunter-gatherer diet, is a modern nutritional plan based on the presumed ancient diet of wild plants and animals that various hominid species habitually consumed during the Paleolithic era—a period of about 2.5 million years which ended around 10,000 years ago with the development of agriculture and grain-based diets. In common usage, the term "paleolithic diet" can also refer to actual ancestral human diets, insofar as these can be reconstructed.

Centered on commonly available modern foods, the contemporary "Paleolithic diet" consists mainly of fish, grass-fed pasture raised meats, eggs, vegetables, fruit, fungi, roots, and nuts, and excludes grains, legumes, dairy products, potatoes, refined salt, refined sugar, and processed oils.

First popularized in the mid-1970s by gastroenterologist Walter L. Voegtlin, this nutritional concept has been promoted and adapted by a number of authors and researchers in several books and academic journals. A common theme in evolutionary medicine, Paleolithic nutrition is based on the premise that human genetics have scarcely changed since the dawn of agriculture, and modern humans are genetically adapted to the diet of their Paleolithic ancestors. Therefore an ideal diet for human health and well-being is one that resembles this ancestral diet.

Proponents of this diet argue that modern human populations subsisting on traditional diets, allegedly similar to those of Paleolithic hunter-gatherers, are largely free of diseases of affluence. They assert that multiple studies of the effect of Paleolithic diet in humans have shown improved health outcomes relative to other widely recommended diets. Supporters also point to several potentially therapeutic nutritional characteristics of pre-agricultural diets.

The paleolithic diet is a controversial topic amongst some dietitians and anthropologists. An article on the National Health Service of the United Kingdom Choices website refers to it as a fad diet.

The Paleo Diet is based upon every day, modern foods that mimic the food groups of our pre-agricultural, hunter-gatherer ancestors. The following seven fundamental characteristics of hunter-gatherer diets will help to optimize your health, minimize your risk of chronic disease, and lose weight.

Present Practices of Paleo Diet or Caveman Diet

The paleolithic diet is a modern dietary regimen that seeks to mimic the diet of pre-agricultural hunter-gatherers; it generally corresponds to what was available in any of the ecological niches of Paleolithic humans. Based upon commonly available modern foods, it includes cultivated plants and domesticated animal meat as an alternative to the wild sources of the original pre-agricultural diet. The ancestral human diet is inferred from historical and ethnographic studies of modern-day hunter-gatherers as well as archaeological finds, anthropological evidence and application of optimal foraging theory.

The Paleolithic diet consists of foods that can be hunted and fished, such as meat, offal, and seafood, and foods that can be gathered, such as eggs, insects, fruit, nuts, seeds, vegetables, mushrooms, herbs, and spices. Some sources advise eating only lean cuts of meat, free of food additives, preferably wild game meats and grass-fed beef since they contain higher levels of omega-3 fats compared with grain-produced domestic meats. Food groups that advocates claim were rarely or never consumed by humans before the Neolithic (agricultural) revolution are excluded from the diet, mainly grains, legumes (e.g. beans and peanuts), dairy products, salt, refined sugar and processed oils. Some advocates consider the use of oils with low omega-6/omega-3 ratios, such as olive and canola oils, to be healthy and advisable.

On the Paleolithic diet, practitioners are permitted to drink mainly water, and some advocates recommend tea as a healthy drink. Eating a wide variety of plant foods is recommended to avoid high intakes of potentially harmful bioactive substances, such as goitrogens, which are present in some roots, vegetables, and seeds. Unlike raw food diets, all foods may be cooked, without restrictions. But, there are Paleolithic dieters who believe that humans have not adapted to cooked foods, and so they eat only foods which are both raw and Paleolithic. Want to learn more why we cook our food...? Watch this video (Did the Discovery of Cooking Make Us Human?) and learn why it is better to cook some type of food than to eat it raw. Learn why cooking our food created 'big human brains'?

According to certain proponents of the Paleolithic diet, practitioners should derive about 56–65% of their food energy from animal foods and 36–45% from plant foods. They recommend a diet high in protein (19–35% energy) and relatively low in carbohydrates (22–40% energy), with a fat intake (28–58% energy) similar to or higher than that found in Western diets.

Staffan Lindeberg advocates a Paleolithic diet, but does not recommend any particular proportions of plants versus meat or macronutrient ratios. According to Lindeberg, calcium supplementation may be considered when the intake of green leafy vegetables and other dietary sources of calcium is limited.

1. Higher protein intake – Protein comprises 15 % of the calories in the average western diet, which is considerably lower than the average values of 19-35 % found in hunter-gatherer diets. Meat, seafood, and other animal products represent the staple foods of modern day Paleo diets.

2. Lower carbohydrate intake and lower glycemic index – Non-starchy fresh fruits and vegetables represent the main carbohydrate source and will provide for 35-45 % of your daily calories. Almost all of these foods have low glycemic indices that are slowly digested and absorbed, and won’t spike blood sugar levels.

3. Higher fiber intake – Dietary fiber is essential for good health, and despite what we’re told, whole grains aren’t the place to find it. Non-starchy vegetables contain eight times more fiber than whole grains and 31 times more than refined grains. Even fruits contain twice as much fiber as whole grains and seven times more than refined grains.

4. Moderate to higher fat intake dominated by mono-unsaturated and polyunsaturated fats with balanced Omega-3 and Omega-6 fats – It is not the total amount of fat in your diet that raises your blood cholesterol levels and increases your risk for heart disease, cancer, and type 2 diabetes, but rather the type of fat. Cut the trans fats and the Omega-6 polyunsaturated fats in your diet and increase the healthful monounsaturated and Omega-3 fats that were the mainstays of Stone Age diets. Recent large population studies known as meta analyses show that saturated fats have little or no adverse effects upon cardiovascular disease risk.

5. Higher potassium and lower sodium intake – Unprocessed, fresh foods naturally contain 5 to 10 times more potassium than sodium, and Stone Age bodies were adapted to this ratio. Potassium is necessary for the heart, kidneys, and other organs to work properly. Low potassium is associated with high blood pressure, heart disease, and stroke – the same problems linked to excessive dietary sodium. Today, the average American consumes about twice as much sodium as potassium.

6. Net dietary alkaline load that balances dietary acid – After digestion, all foods present either a net acid or alkaline load to the kidneys. Acid producers are meats, fish, grains, legumes, cheese, and salt. Alkaline-yielding foods are fruits and veggies (Learn how to store fruits and vegetables at home). A lifetime of excessive dietary acid may promote bone and muscle loss, high blood pressure, and increased risk for kidney stones, and may aggravate asthma and exercise-induced asthma.

7. Higher intake of, vitamins, minerals, antioxidants, and plant phytochemicals – Whole grains are not a good substitute for grass produced or free ranging meats, fruits, and veggies, as they contain no vitamin C, vitamin A, or vitamin B12. Many of the minerals and some of the B vitamins whole grains do contain are not well absorbed by the body.

B. Research on Paleo Diet or Caveman Diet

1. Archeological record
One line of evidence used to support the Stone Age diet is the decline in human health and body mass that occurred with the adoption of agriculture, at the end of the Paleolithic era. Associated with the introduction of domesticated and processed plant foods, such as cereal grains, in the human diet, there was, in many areas, a general decrease in body stature and dentition size, and an increase in dental caries rates. There is evidence of a general decline in health in some areas; whether the decline was caused by dietary change is debated academically.

2. Observational studies
Based on the subsistence patterns and biomarkers of hunter-gatherers studied in the last century, advocates argue that modern humans are well adapted to the diet of their Paleolithic ancestor. The diet of modern hunter-gatherer groups is believed to be representative of patterns for humans of fifty to twenty-five thousand years ago, and individuals from these and other technologically primitive societies, including those individuals who reach the age of 60 or beyond, seem to be largely free of the signs and symptoms of chronic disease (such as obesity, high blood pressure, nonobstructive coronary atherosclerosis, and insulin resistance) that universally afflict the elderly in western societies (with the exception of osteoarthritis, which afflicts both populations). Moreover, when these people adopt western diets, their health declines and they begin to exhibit signs and symptoms of "diseases of civilization".

In one clinical study, stroke and ischaemic heart disease appeared to be absent in a population living on the island of Kitava, in Papua New Guinea, where a subsistence lifestyle, uninfluenced by western dietary habits, was still maintained.

One of the most frequent criticisms of the Paleolithic diet is that it is unlikely that pre-agricultural hunter-gatherers suffered from the diseases of modern civilization simply because they did not live long enough to develop these illnesses, which are typically associated with old age. According to S. Jay Olshansky and Bruce Carnes, "there is neither convincing evidence nor scientific logic to support the claim that adherence to a Paleolithic diet provides a longevity benefit." In response to this argument, advocates of the paleodiet state that while Paleolithic hunter-gatherers did have a short average life expectancy, modern human populations with lifestyles resembling that of our pre-agricultural ancestors have little or no diseases of affluence, despite sufficient numbers of elderly. In hunter-gatherer societies where demographic data is available, the elderly are present, but they tend to have high mortality rates and rarely survive past the age of 80, with causes of death (when known) ranging from injuries to measles and tuberculosis.

Critics further contend that food energy excess, rather than the consumption of specific novel foods, such as grains and dairy products, underlies the diseases of affluence. According to Geoffrey Cannon, science and health policy advisor to the World Cancer Research Fund, humans are designed to work hard physically to produce food for subsistence and to survive periods of acute food shortage, and are not adapted to a diet rich in energy-dense foods. Similarly, William R. Leonard, a professor of anthropology at Northwestern University, states that the health problems facing industrial societies stem not from deviations from a specific ancestral diet but from an imbalance between calories consumed and calories burned, a state of energy excess uncharacteristic of ancestral lifestyles.

3. Intervention studies
The first animal experiment on a Paleolithic diet suggested that this diet, as compared with a cereal-based diet, conferred higher insulin sensitivity, lower C-reactive protein and lower blood pressure in 24 domestic pigs. There was no difference in basal serum glucose. The first human clinical randomized controlled trial involved 29 people with glucose intolerance and ischemic heart disease, and it found that those on a Paleolithic diet had a greater improvement in glucose tolerance compared to those on a Mediterranean diet. Furthermore, the Paleolithic diet was found to be more satiating per calorie compared to the Mediterranean diet.

A clinical, randomized, controlled cross-over study in the primary care setting compared the Paleolithic diet with a commonly prescribed diet for type 2 diabetes. The Paleolithic diet resulted in lower mean values of HbA1c, triacylglycerol, diastolic blood pressure, body mass index, waist circumference and higher values of high density lipoprotein when compared to the Diabetes diet. Also, glycemic control and other cardiovascular factors were improved in both diets without significant differences. It is also important to note that the Paleolithic diet was lower in total energy, energy density, carbohydrate, dietary glycemic load and glycemic index, saturated fatty acids and calcium, but higher in unsaturated fatty acids, dietary cholesterol and some vitamins. Two clinical trials designed to test various physiological effects of the Paleolithic diet are currently underway, and the results of one completed trial have shown metabolic and physiologic improvements. The European Journal of Clinical Nutrition published a study of a trial of the Paleolithic diet in 20 healthy volunteers. The study had no control group, and only 14 individuals completed the diet. In the study, in three weeks there was an average weight reduction of 2.3 kg, an average reduction in waist circumference of 1.5 cm (about one-half inch), an average reduction in systolic blood pressure of 3 mm Hg, and a 72% reduction in plasminogen activator inhibitor-1 (which might translate into a reduced risk of heart attack and stroke.) However, the NHS Knowledge Service pointed out that this study, like most human diet studies, relied on observational data.

The NHS concluded that the lack of a control group, and the small sample of size of the study, compromises their conclusions. With only 14 participants the study lacks the statistical power to detect health improvements, and perhaps the simple fact that these 14 individuals knew that they were on a diet program made them more aware of weight and exercise regime, skewing the results.

C. Reception

Critics have argued that to the extent that hunter-gatherer societies fail to suffer from "diseases of civilization", this may be due to reduced calories in their diet, shorter average lifespan, or a variety of other factors, rather than dietary composition. Some researchers have also taken issue with the accuracy of the diet's underlying evolutionary logic or suggested that the diet could potentially pose health risks.

A 2011 ranking by U.S. News & World Report, involving a panel of 22 experts, ranked the Paleo diet lowest of the 20 diets evaluated based on factors including health, weight-loss and ease of following. These results were repeated in the 2012 survey, in which the diet tied with the Dukan diet for the lowest ranking out of 29 diets; U.S. News & World Report stated that their experts "took issue with the diet on every measure". However, one expert involved in the ranking stated that a "true Paleo diet might be a great option: very lean, pure meats, lots of wild plants. The modern approximations… are far from it." He added that "duplicating such a regimen in modern times would be difficult."

The U.S. News ranking assumed a low-carb version of the paleo diet, specifically containing only 23% carbohydrates. Higher carbohydrate versions of the paleo diet, which allow for significant consumption of root vegetables, were not a part of this ranking. Dr. Loren Cordain, a proponent of a low-carbohydrate Paleolithic diet, responded to the U.S. News ranking, stating that their "conclusions are erroneous and misleading" and pointing out that "five studies, four since 2007, have experimentally tested contemporary versions of ancestral human diets and have found them to be superior to Mediterranean diets, diabetic diets and typical western diets in regard to weight loss, cardiovascular disease risk factors and risk factors for type 2 diabetes." The editors of the U.S. News ranking replied that they had reviewed the five studies and found them to be "small and short, making strong conclusions difficult".

D. Opposing Views

Critics have questioned the accuracy of the science on which the diet is based. John A. McDougall (M.D), author of The Starch Solution: Eat the Foods You Love, Regain Your Health, and Lose the Weight for Good!, attempted to discredit the science used to determine the paleolithic diet, and proposed that the real paleolithic diet or human diet around this time was instead based primarily on starches.

Based on John A. McDougall (M.D) study, around the globe—any region with a large population of trim, healthy people reveals the same truth: Healthy populations get most of their calories from starch. Eat a traditional meal in Japan, China, or most any Asian country and you will find y our bowl filled with rice, possibly alongside sweet potatoes and buckwheat. The same truth dates back throughout recorded human history. The Incas of South America centered their diet on potatoes. The Incan warriors switched to quinoa for strength prior to battle. The Mayans and Aztecs of Central America were known as “the people of the corn.” The ancient Egyptians’ starch of choice was wheat.

Throughout civilization and around the world, six foods have provided our primary fuel: barley , corn, millet, potatoes, rice, and wheat.

Science documents it well: Over at least the past 13,000 y ears, starch has been central to the diets of all healthy, large, successful populations. In fact, new discoveries show evidence of starch-based diets even earlier. Explained on this video, The Food We Were Born to Eat.

The evolutionary assumptions underlying the Paleolithic diet have been disputed. According to Alexander Ströhle, Maike Wolters and Andreas Hahn, with the Department of Food Science at the University of Hanover, the statement that the human genome evolved during the Pleistocene (a period from 1,808,000 to 11,550 years ago) rests on the gene-centered view of evolution, which they believe to be controversial. They rely on Gray (2001) to argue that evolution of organisms cannot be reduced to the genetic level with reference to mutation, and that there is no one-to-one relationship between genotype and phenotype. They further question the notion that 10,000 years is an insufficient period of time to ensure an adequate adaptation to agrarian diets. They note that alleles conferring lactose tolerance increased to high frequencies in Europe just a few thousand years after animal husbandry was invented. Recent increases in the number of copies of the gene for salivary amylase, which digests starch, appear to be related to the development of agriculture.

Referring to Wilson (1994), Ströhle et al. argue that "the number of generations that a species existed in the old environment was irrelevant, and that the response to the change of the environment of a species would depend on the heritability of the traits, the intensity of selection and the number of generations that selection acts." They state that if the diet of Neolithic agriculturalists had been in discordance with their physiology, then this would have created a selection pressure for evolutionary change. Modern humans, such as Europeans, whose ancestors have subsisted on agrarian diets for 400–500 generations, should be somehow adequately adapted to it.

In response to this argument, Wolfgang Kopp states that "we have to take into account that death from atherosclerosis and cardiovascular disease (CVD) occurs later during life, as a rule after the reproduction phase. Even a high mortality from CVD after the reproduction phase will create little selection pressure. Thus, it seems that a diet can be functional (it keeps us going) and dysfunctional (it causes health problems) at the same time."  Moreover, S. Boyd Eaton and colleagues have indicated that "comparative genetic data provide compelling evidence against the contention that long exposure to agricultural and industrial circumstances has distanced us, genetically, from our Stone Age ancestors"; however, they mention exceptions such as increased lactose and gluten tolerance, which improve ability to digest dairy and grains, while other studies indicate that human adaptive evolution has accelerated since the Paleolithic.

Referencing Mahner et al. (2001) and Ströhle et al. (2006), Ströhle et al. state that "whatever is the fact, to think that a dietary factor is valuable (functional) to the organism only when there was ‘genetical adaptation’ and hence a new dietary factor is dysfunctional per se because there was no evolutionary adaptation to it, such a panselectionist misreading of biological evolution seems to be inspired by a naive adaptationistic view of life."

Katharine Milton, a professor of physical anthropology at the University of California, Berkeley, has also disputed the evolutionary logic upon which the Paleolithic diet is based. She questions the premise that the metabolism of modern humans must be genetically adapted to the dietary conditions of the Paleolithic. Relying on several of her previous publications, Milton states that "there is little evidence to suggest that human nutritional requirements or human digestive physiology were significantly affected by such diets at any point in human evolution."

There is some evidence suggesting that Paleolithic societies were processing cereals for food use at least as early as 23,000. These findings are a matter of dispute.

1. Plant-to-animal ratio

The specific plant to animal food ratio in the Paleolithic diet is also a matter of some dispute. The average diet among modern hunter-gatherer societies is estimated to consist of 64–68% of animal calories and 32–36% of plant calories, with animal calories further divided between fished and hunted animals in varying proportions (most typically, with hunted animal food comprising 26–35% of the overall diet). As part of the Man the Hunter paradigm, this ratio was used as the basis of the earliest forms of the Paleolithic diet by Voegtlin, Eaton and others. To this day, many advocates of the Paleolithic diet consider high percentage of animal flesh to be one of the key features of the diet.

However, great disparities do exist, even between different modern hunter-gatherer societies. The animal-derived calorie percentage ranges from 25% in the Gwi people of southern Africa, to 99% in Alaskan Nunamiut. The animal-derived percentage value is skewed upwards by polar hunter-gatherer societies, who have no choice but to eat animal food because of the inaccessibility of plant foods. Since those environments were only populated relatively recently (for example, Paleo-Indian ancestors of Nunamiut are thought to have arrived in Alaska no earlier than 30,000 years ago), such diets represent recent adaptations rather than conditions that shaped human evolution during much of the Paleolithic.

More generally, hunting and fishing tend to provide a higher percentage of energy in forager societies living at higher latitudes. Excluding cold-climate and equestrian foragers results in a diet structure of 52% plant calories, 26% hunting calories, and 22% fishing calories. Furthermore, those numbers may still not be representative of a typical Stone Age diet, since fishing did not become common in many parts of the world until the Upper Paleolithic period 35-40 thousand years ago,] and early humans' hunting abilities were relatively limited, compared to modern hunter-gatherers, as well (the oldest incontrovertible evidence for the existence of bows only dates to about 8000 BCE, and nets and traps were invented 20,000 to 29,000 years ago).

Another view is that, up until the Upper Paleolithic, humans were frugivores (fruit eaters), who supplemented their meals with carrion, eggs, and small prey such as baby birds and mussels, and, only on rare occasions, managed to kill and consume big game such as antelopes. This view is supported by the studies of higher apes, particularly chimpanzees. Chimpanzees are closest to humans genetically, sharing more than 98% of their DNA code with humans, and their digestive tract is functionally very similar to that of humans.

Chimpanzees are primarily frugivores, but they could and would consume and digest animal flesh, given the opportunity. In general, their actual diet in the wild is about 95% plant-based, with the remaining 5% filled with insects, eggs, and baby animals. However, in some ecosystems chimpanzees are predatory, forming parties to hunt monkeys. Some comparative studies of human and higher primate digestive tracts do suggest that humans have evolved to obtain greater amounts of calories from sources such as animal foods, allowing them to shrink the size of the gastrointestinal tract, relative to body mass, and to increase the brain mass instead.

A difficulty with the frugivore point of view is that humans are established to conditionally require certain long-chain polyunsaturated fatty acids (LC-PUFAs), such as AA and DHA, from the diet. Human LC-PUFA requirements are much greater than chimpanzees' because of humans' larger brain mass, and humans' abilities to synthesize them from other nutrients are poor, suggesting readily available external sources. Pregnant and lactating females require 100 mg of DHA per day. But LC-PUFAs are almost nonexistent in plants and in most tissues of warm-climate animals.

The main sources of DHA in the modern human diet are fish and the fatty organs of animals, such as brains, eyes and viscera. Microalgae is a farmed plant-based source commonly used by vegetarians. Despite the general shortage of evidence for extensive fishing, thought to require relatively sophisticated tools which have become available only in the last 30–50 thousand years, it has been argued that exploitation of coastal fauna somehow provided hominids with abundant LC-PUFAs. Alternatively, it has been proposed that early hominids frequently scavenged predators' kills and consumed parts which were left untouched by predators, most commonly the brain, which is very high in AA and DHA. Just 100 g of scavenged African ruminant brain matter provide more DHA than is consumed by a typical modern U.S. adult in the course of a week. Other authors suggested that human ability to convert alpha-Linolenic acid into DHA, while poor, is, nevertheless, adequate to prevent DHA deficiency in a plant-based diet.

2. Nutritional factors and health effects

Since the end of the Paleolithic period, several foods that humans rarely or never consumed during previous stages of their evolution have been introduced as staples in their diet. With the advent of agriculture and the beginning of animal domestication roughly 10,000 years ago, during the Neolithic Revolution, humans started consuming large amounts of dairy products, beans, cereals, alcohol and salt. In the late 18th and early 19th centuries, the Industrial revolution led to the large scale development of mechanized food processing techniques and intensive livestock farming methods, that enabled the production of refined cereals, refined sugars and refined vegetable oils, as well as fattier domestic meats, which have become major components of Western diets.

Such food staples have fundamentally altered several key nutritional characteristics of the human diet since the Paleolithic era, including glycemic load, fatty acid composition, macronutrient composition, micronutrient density, acid-base balance, sodium-potassium ratio, and fiber content.

These dietary compositional changes have been theorized as risk factors in the pathogenesis of many of the so-called "diseases of civilization" and other chronic illnesses that are widely prevalent in Western societies, including obesity, cardiovascular disease, high blood pressure, type 2 diabetes, osteoporosis, autoimmune diseases, colorectal cancer, myopia, acne, depression, and diseases related to vitamin and mineral deficiencies.

3. Macronutrient composition
i. Protein and carbohydrates

"The increased contribution of carbohydrate from grains to the human diet following the agricultural revolution has effectively diluted the protein content of the human diet." In modern hunter-gatherer diets, dietary protein is characteristically elevated (19–35% of energy) at the expense of carbohydrate (22–40% of energy). High-protein diets may have a cardiovascular protective effect and may represent an effective weight loss strategy for the overweight or obese. Furthermore, carbohydrate restriction may help prevent obesity and type 2 diabetes, as well as atherosclerosis. Carbohydrate deprivation to the point of ketosis has been argued both to have negative and positive effects on health.

The notion that pre-agricultural hunter-gatherers would have typically consumed a diet relatively low in carbohydrate and high in protein has been questioned. Critics argue that there is insufficient data to identify the relative proportions of plant and animal foods consumed on average by Paleolithic humans in general, and they stress the rich variety of ancient and modern hunter-gatherer diets. Furthermore, pre-agricultural hunter-gatherers may have generally consumed large quantities of carbohydrates in the form of carbohydrate-rich tubers (plant underground storage organs). According to Staffan Lindeberg, an advocate of the Paleolithic diet, a plant-based diet rich in carbohydrates is consistent with the human evolutionary past.

It has also been argued that relative freedom from degenerative diseases was, and still is, characteristic of all hunter-gatherer societies irrespective of the macronutrient characteristics of their diets. Marion Nestle, a professor in the Department of Nutrition and Food Studies at New York University, judging from research relating nutritional factors to chronic disease risks and to observations of exceptionally low chronic disease rates among people eating vegetarian, Mediterranean and Asian diets, has suggested that plant-based diets may be most associated with health and longevity.

ii. Fatty acids
Hunter-gatherer diets have been argued to maintain relatively high levels of monounsaturated and polyunsaturated fats, moderate levels of saturated fats (10–15% of total food energy) as well as a low omega-6:omega-3 fatty acid ratio. Cows fed a grass-based diet produce significant amounts of omega-3 fatty acids compared to grain-fed animals, while minimizing trans fats and saturated fats. The diet does include a significant amount of cholesterol due to the inclusion of lean meat. These nutritional factors may serve to inhibit the development of cardiovascular disease. This high ratio of polyunsaturated to saturated fats has been challenged. While a low saturated fat intake was argued for it has been argued that hunter-gatherers would selectively hunt fatter animals and utilize the fattiest parts of the animals (such as bone marrow). Watch Food Documentaries- The Men Who Made Us Fat. If you don't have time bookmark it and watch it later.
iii. Energy density
The Paleolithic diet has lower energy density than the typical diet consumed by modern humans. This is especially true in primarily plant-based/vegetarian versions of the diet, but it still holds if substantial amounts of lean meat are included in calculations. For example, most fruits and berries contain 0.4 to 0.8 calories per gram, vegetables can be even lower than that (cucumbers contain only 0.16 calories per gram). Lean game meat, such as cooked wild rabbit, is more energy-dense (up to 1.7 calories per gram), but it does not constitute the bulk of the diet by mass/volume at the recommended plant/animal ratios, and it does not reach the densities of many processed foods commonly consumed by modern humans: most McDonalds sandwiches such as the Big Mac average 2.4 to 2.8 calories/gram, and sweets such as cookies and chocolate bars commonly exceed 4 calories/gram.

There is substantial evidence that people consuming high energy-density diets are prone to overeating and they are at a greater risk of weight gain. Conversely, low caloric density diets tend to provide a greater satiety feeling at the same energy intake, and they have been shown effective at achieving weight loss in overweight individuals without explicit caloric restrictions.

Even some authors who may otherwise appear to be critical of the concept of Paleolithic diet have argued that high energy density of modern diets, as compared to ancestral/primate diets, contributes to the rate of diseases of affluence in the industrial world.

4. Micronutrient density
Fruits, vegetables, meat and organ meats, and seafood, which are staples of the hunter-gatherer diet, are more micronutrient-dense than refined sugars, grains, vegetable oils, and dairy products in relation to digestible energy. Consequently, the vitamin and mineral content of the diet is very high compared with a standard diet, in many cases a multiple of the RDA.

Fish and seafood represent a particularly rich source of omega-3 fatty acids and other micronutrients, such as iodine, iron, zinc, copper, and selenium, that are crucial for proper brain function and development. Terrestrial animal foods, such as muscle, brain, bone marrow, thyroid gland, and other organs, also represent a primary source of these nutrients. Calcium-poor grains and legumes are excluded from the diet.

Although, leafy greens like Kale and dandelion greens as well as nuts such as almonds are very high sources of calcium. Also, components in plants make their low calcium amounts much more easily absorbed, unlike items with high calcium content such as dairy two notable exceptions are calcium (see below) and vitamin D, both of which may be present in the diet in inadequate quantities. Modern humans require much more vitamin D than hunter-gatherers, because they do not get the same amount of exposure to sun. This need is commonly satisfied in developed countries by artificially fortifying dairy products with the vitamin. To avoid deficiency, a modern human on a hunter-gatherer diet would have to take artificial supplements of the vitamin, ensure adequate intake of some fatty fish, or increase the amount of exposure to sunlight (it has been estimated that 30 minutes of exposure to mid-day sun twice a week is adequate for most people).

5. Fiber content and glycemic load
Despite its relatively low carbohydrate content, the Paleolithic diet involves a substantial increase in consumption of fruit and vegetables, compared to the Western diet, potentially as high as 1.65 to 1.9 kg/day. Hunter-gatherer diets, which rely on uncultivated, heavily fibrous fruit and vegetables, contain even more. Fiber intake in pre-agricultural diets is thought to have exceeded 100 g/day. This is dramatically higher than the actual current U.S. intake of 15 g/day.

6. Fiber content and glycemic load
Despite its relatively low carbohydrate content, the Paleolithic diet involves a substantial increase in consumption of fruit and vegetables, compared to the Western diet, potentially as high as 1.65 to 1.9 kg/day. Hunter-gatherer diets, which rely on uncultivated, heavily fibrous fruit and vegetables, contain even more. Fiber intake in pre-agricultural diets is thought to have exceeded 100 g/day. This is dramatically higher than the actual current U.S. intake of 15 g/day.

Unrefined wild plant foods like those available to contemporary hunter-gatherers typically exhibit low glycemic indices. Moreover, dairy products, such as milk, have low glycemic indices, but are highly insulinotropic, with an insulin index similar to that of white bread. However, in fermented milk products, such as yogurt, the presence of organic acids may counteract the insulinotropic effect of milk in mixed meals. These dietary characteristics may lower risk of diabetes, obesity and other related syndrome X diseases by placing less stress on the pancreas to produce insulin due to staggered absorption of glucose, thus preventing insulin insensitivity.

7. Sodium-potassium ratio
It has been estimated that people in the Paleolithic era consumed 11,000 mg of potassium and 700 mg of sodium daily.

The dominance of sodium over potassium in the U.S. diet adversely affects cardiovascular function and contributes to hypertension and stroke: the Paleolithic diet inverts this ratio.

8. Calcium and acid-base balance
Diets containing high amounts of animal products, animal protein, processed foods, and other foods that induce and sustain increased acidity of body fluid may contribute to the development of osteoporosis and renal stones, loss of muscle mass, and age-related renal insufficiency due to the body's use of calcium to buffer pH. The paleo diet may not contain the high levels of calcium recommended in the U.S. to prevent these effects. However, because of the absence of cereals and energy-dense, nutrient-poor foods in the ancestral hunter-gatherer diet—foods that displace base-yielding fruits and vegetables—that diet has been estimated to produce a net base load on the body, as opposed to a net acid load, which may reduce calcium excretion.

9. Bioactive substances and antinutrients
Furthermore, cereal grains, legumes and milk contain bioactive substances, such as gluten and casein, which have been implicated in the development of various health problems. Consumption of gluten, a component of certain grains, such as wheat, rye and barley, is known to have adverse health effects in individuals suffering from a range of gluten sensitivities, including celiac disease. Since the Paleolithic diet is devoid of cereal grains, it is free of gluten. The paleo diet is also casein-free. Casein, a protein found in milk and dairy products, may impair glucose tolerance in humans.

Compared to Paleolithic food groups, cereal grains and legumes contain high amounts of antinutrients, including alkylresorcinols, alpha-amylase inhibitors, protease inhibitors, lectins and phytates, substances known to interfere with the body's absorption of many key nutrients. Molecular-mimicking proteins, which are basically made up of strings of amino acids that closely resemble those of another totally different protein, are also found in grains and legumes, as well as milk and dairy products. Advocates of the Paleolithic diet have argued that these components of agrarian diets promote vitamin and mineral deficiencies and may explain the development of the "diseases of civilization" as well as a number of autoimmune-related diseases.

E. History of Paleo Diet

Gastroenterologist Walter L. Voegtlin was one of the first to suggest that following a diet similar to that of the Paleolithic era would improve a person's health. In 1975, he self-published The Stone Age Diet: Based on In-depth Studies of Human Ecology and the Diet of Man, in which he argued that humans are carnivorous animals. He noted that the ancestral Paleolithic diet was that of a carnivore — chiefly fats and protein, with small amounts of carbohydrates. His dietary prescriptions were based on his own medical treatments of various digestive problems, namely colitis, Crohn's disease, irritable bowel syndrome and indigestion.

In 1985, S. Boyd Eaton and Melvin Konner, both of Emory University, published a paper on Paleolithic nutrition in the New England Journal of Medicine, which attracted wider mainstream medical attention to the concept. Three years later, S. Boyd Eaton, Konner, and Marjorie Shostak published a book about this nutritional approach, which was based on achieving the same proportions of nutrients (fat, protein, and carbohydrates, as well as vitamins and minerals) as were present in the diets of late Paleolithic people. It did not exclude foods that were not available before the development of agriculture. As such, this nutritional approach included skimmed milk, whole-grain bread, brown rice, and potatoes prepared without fat, on the premise that such foods supported a diet with the same macronutrient composition as the Paleolithic diet. In 1989, these authors published a second book on Paleolithic nutrition.

Starting in 1989, Staffan Lindeberg, a Swedish medical doctor and scientist now associate professor at Lund University, led scientific surveys of the non-westernized population on Kitava, one of the Trobriand Islands of Papua New Guinea. These surveys, collectively referred to as the Kitava Study, found that this population apparently did not suffer from stroke, ischemic heart disease, diabetes, obesity or hypertension. Starting with the first publication in 1993, scholars with the Kitava Study have published a number of scientific works on the relationship between diet and western disease.

In 2003, Lindeberg published a Swedish-language medical textbook on the subject. In 2010, this book was wholly revised, updated, translated and published for the first time in English.

Since the end of the 1990s, a number of medical doctors and nutritionists have advocated a return to a so-called Paleolithic (pre-agricultural) diet. Proponents of this nutritional approach have published books and created websites to promote their dietary prescriptions. They have synthesized diets from modern foods that emulate nutritional characteristics of the ancient Paleolithic diet. Some of these allow specific foods that would have been unavailable to pre-agricultural peoples, such as some animal products (i.e. dairy), processed oils, and beverages.

F. Rationale and Evolutionary Assumptions

According to S. Boyd Eaton, "we are the heirs of inherited characteristics accrued over millions of years; the vast majority of our biochemistry and physiology are tuned to life conditions that existed before the advent of agriculture some 10,000 years ago. Genetically our bodies are virtually the same as they were at the end of the Paleolithic era some 20,000 years ago."

Paleolithic nutrition has its roots in evolutionary biology and is a common theme in evolutionary medicine. The reasoning underlying this nutritional approach is that natural selection had sufficient time to genetically adapt the metabolism and physiology of Paleolithic humans to the varying dietary conditions of that era. But in the 10,000 years since the invention of agriculture and its consequent major change in the human diet, natural selection has had too little time to make the optimal genetic adaptations to the new diet. Physiological and metabolic maladaptations result from the suboptimal genetic adaptations to the contemporary human diet, which in turn contribute to many of the so-called diseases of civilization.

More than 70% of the total daily energy consumed by all people in the United States comes from foods such as dairy products, cereals, refined sugars, refined vegetable oils and alcohol. Advocates of the Paleolithic diet assert these foods contributed little or none of the energy in the typical pre-agricultural hominin diet. Proponents of this diet argue that excessive consumption of these novel Neolithic and industrial-era foods is responsible for the current epidemic levels of obesity, cardiovascular disease, high blood pressure, type 2 diabetes, osteoporosis and cancer in the US and other contemporary Western populations.

G. Physical Activity

Researchers have applied the evolutionary rationale to the paleolithic lifestyle to argue for high levels of physical activity in addition to dietary practices. They suggest that human genes "evolved with the expectation of requiring a certain threshold of physical activity" and that the sedentary lifestyle results in abnormal gene expression. Compared to ancestral humans, modern humans often have increased body fat and substantially less lean muscle, which is a risk factor for insulin resistance. Human metabolic processes were evolved in the presence of physical activity-rest cycles, which regularly depleted skeletal muscles of their glycogen stores. To date it is unclear whether these activity cycles universally included prolonged endurance activity (e.g. persistence hunting) and/or shorter, higher intensity activity.

S. Boyd Eaton estimated that ancestral humans spent one-third of their caloric intake on physical activity (1000 kcal/day out of the total caloric intake of 3000 kcal/day), and that the paleolithic lifestyle was well approximated by the WHO recommendation of the physical activity level of 1.75, or 60 minutes/day of moderate-intensity exercise. L. Cordain estimated that the optimal level of physical activity is on the order of 90 kcal/kg/week (900 kcal/day for a 70 kg human.)


Elton, S. (2008). "Environments, adaptations and evolutionary medicine: Should we be eating a ‘stone age’ diet?". In O’Higgins, P. & Elton, S. Medicine and Evolution: Current Applications, Future Prospects. London: Taylor and Francis. ISBN 1-4200-5134-2.

Lindeberg, Staffan (June 2005). "Paleolithic diet ('stone age' diet)". Scandinavian Journal of Food & Nutrition 49 (2): 75–7. doi:10.1080/11026480510032043.

Lindeberg, Staffan; Cordain, Loren; Eaton, S. Boyd (September 2003). "Biological and Clinical Potential of a Paleolithic Diet". Journal of Nutritional and Environmental Medicine 13 (3): 149–60. doi:10.1080/13590840310001619397.

Voegtlin, Walter L. (1975). The stone age diet: Based on in-depth studies of human ecology and the diet of man. Vantage Press. ISBN 0-533-01314-3.

Smith, Emma (October 12, 2008). "The Ray Mears caveman diet". The Sunday Times. Retrieved November 1, 2008.

Richards, Michael P. (December 2002). "A brief review of the archaeological evidence for Paleolithic and Neolithic subsistence". European Journal of Clinical Nutrition 56 (12): 1270–78. doi:10.1038/sj.ejcn.1601646. PMID 12494313.

Naugler, Christopher T. (September 1 2008). "Evolutionary medicine: Update on the relevance to family practice". Canadian Family Physician 54 (9): 1265–9. PMC 2553465. PMID 18791103.

Eaton, S. Boyd; Strassman, Beverly I; Nesse, Randolph M; Neel, James V; Ewald, Paul W; Williams, George C; Weder, Alan B; Eaton, Stanley B et al. (2002). "Evolutionary Health Promotion". Preventive Medicine 34 (2): 109–18.

Cordain, Loren; Eaton, S Boyd; Sebastian, Anthony; Mann, Neil; Lindeberg, Staffan; Watkins, Bruce A; O’Keefe, James H; Brand-Miller, Janette (2005). "Origins and evolution of the Western diet: health implications for the 21st century". American Journal of Clinical Nutrition 81 (2): 341–54. PMID 15699220.

Kligler, Benjamin & Lee, Roberta A. (eds.) (2004). "Paleolithic diet". Integrative medicine. McGraw-Hill Professional. pp. 139–40. ISBN 0-07-140239-X.

Eaton, S. Boyd; Cordain, Loren; Lindeberg, Staffan (2002).
"Evolutionary Health Promotion: A Consideration of Common Counterarguments". Preventive Medicine 34 (2): 119–23. doi:10.1006/pmed.2001.0966. PMID 11817904.

Lindeberg S, Jönsson T, Granfeldt Y, Borgstrand E, Soffman J, Sjöström K, Ahrén B (September 2007). "A Paleolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease" (PDF). Diabetologia 50 (9): 1795–807. doi:10.1007/s00125-007-0716-y. PMID 17583796.

Frassetto, L A; Schloetter, M; Mietus-Synder, M; Morris, R C; Sebastian, A (2009). "Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet". European Journal of Clinical Nutrition 63 (8): 947–955. doi:10.1038/ejcn.2009.4. PMID 19209185.

Eaton, S. Boyd (2007). "The ancestral human diet: What was it and should it be a paradigm for contemporary nutrition?". Proceedings of the Nutrition Society 65 (1): 1–6. doi:10.1079/PNS2005471. PMID 16441938.

Nestle, Marion (May 1999). "Animal v. plant foods in human diets and health: is the historical record unequivocal?". Proceedings of the Nutrition Society 58 (2): 211–18. doi:10.1017/S0029665199000300. PMID 10466159.

Cannon, Geoffrey (June 2006). "Out of the Box". Public Health Nutrition 9 (4): 411–14. doi:10.1079/PHN2006959.

Milton, Katharine (2002). "Hunter-gatherer diets: wild foods signal relief from diseases of affluence (PDF)". In Ungar, Peter S. & Teaford, Mark F. Human Diet: Its Origins and Evolution. Westport, CT: Bergin and Garvey. pp. 111–22. ISBN 0-89789-736-6.

Fallon, Sally; Enig, Mary G. (January 1, 2000). "Caveman Cuisine". Weston A. Price Foundation.

Voegtlin, Walter L. (1975). The stone age diet: Based on in-depth studies of human ecology and the diet of man. Vantage Press. ISBN 0-533-01314-3.

Audette, Ray V.; Gilchrist, Troy; Audette, Raymond V.; & Eades, Michael R. (November 23, 1999). NeanderThin : Eat Like a Caveman to Achieve a Lean, Strong, Healthy Body. New York: St. Martin's Paperbacks. ISBN 0-312-97591-0. Archived from the original on Juli 19, 2011. Retrieved December 15, 2011.

Eaton, S. Boyd; Konner, Melvin (1985). "Paleolithic Nutrition — A Consideration of Its Nature and Current Implications". The New England Journal of Medicine 312 (5): 283–9. doi:10.1056/NEJM198501313120505. PMID 2981409.

Taylor, Mike (January 9, 2008). "Refined Food Bad! Caveman Diet Good!". Retrieved January 19, 2008.

Eaton, S. Boyd; Shostak, Marjorie; & Konner, Melvin (1988). The Paleolithic Prescription: A Program of Diet & Exercise and a Design for Living. New York: Harper & Row. ISBN 0-06-015871-9.

Sirota, Lorraine Handler; Greenberg, George (1989). "Book reviews". Biofeedback and Self-Regulation 14 (4): 347–54. doi:10.1007/BF00999126.

Gilman, Sander L.; Bauber, Joe (2007). "Paleolithic diet". In Gilman, Sander L. Diets and Dieting: A Cultural Encyclopedia. Routledge. pp. 209–11. ISBN 0-415-97420-8.

Eaton, S. Boyd; Shostak, Marjorie; & Konner, Melvin (1989). Stone-Age Health Programme. Angus & Robertson Childrens. ISBN 0-207-16264-6.

Vines, Gail (August 26, 1989). "Paleolithic recipe for the clean life / Review of 'The Stone-Age Health Programme' by S. Boyd Eaton, Marjorie Shostak and Melvin Konner". New Scientist. Retrieved January 19, 2008.

Lindeberg, S; & Lundh, B (March 1993). "Apparent absence of stroke and ischaemic heart disease in a traditional Melanesian island: a clinical study in Kitava". Journal of Internal Medicine 233 (3): 269–75. doi:10.1111/j.1365-2796.1993.tb00986.x. PMID 8450295.

Lindeberg, Staffan (2003). Maten och folksjukdomarna — ett evolutionsmedicinskt perspektiv (in Swedish). Lund: Studentlitteratur. ISBN 91-44-04167-5. OCLC 186108854.

Lindeberg, Staffan (2010). Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Chichester, UK.: Wiley-Blackwell. ISBN 1-4051-9771-4. OCLC 435728298.

Eades, Michael R. & Eades, Mary Dan (2000). The Protein Power Life plan. New York: Warner Books. ISBN 0-446-60824-6.

Atkins, Robert C. (1999). Dr Atkins' New Diet Revolution. Vermilion. ISBN 0-09-188948-0.

Worm, Nicolai (2002). Syndrom X oder ein Mammut auf den Teller. Mit Steinzeit-Diät aus det Wohl stands Falle (in German). Lünen: Systemed-Verlag. ISBN 3-927372-23-4.

Audette, Ray V.; Gilchrist, Troy; Audette, Raymond V.; & Eades, Michael R. (November 23, 1999). NeanderThin : Eat Like a Caveman to Achieve a Lean, Strong, Healthy Body. New York: St. Martin's Paperbacks. ISBN 0-312-97591-0.

Cordain, Loren (2002). The Paleo Diet: Lose Weight and Get Healthy by Eating the Food You Were Designed to Eat. New York: Wiley. ISBN 0-471-26755-4.

Cordain, Loren & Friel, Joe (2005). The Paleo Diet for Athletes: A Nutritional Formula for Peak Athletic Performance. Rodale Books. ISBN 1-59486-089-0.

Wiss, Don. "Paleo Diet". The Paleolithic Diet Nutrition Page. Archived from the original on January 9, 1997. Retrieved December 15, 2011.

Lindeberg, Staffan. "Home". Paleolithic Diet in Medical Nutrition. Retrieved January 19, 2008.

Cordain, Loren. "The Science of Healthy Eating". The Paleo Diet. Retrieved January 19, 2008.

Lindeberg, Staffan. "Frequently Asked Questions: What can I eat?". Paleolithic Diet in Medical Nutrition. Retrieved January 19, 2008.

O'Keefe, James H.; & Cordain, Loren (January 2004). "Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer" (PDF). Mayo Clinic Proceedings 79 (1): 101–08. doi:10.4065/79.1.101. PMID 14708953.

Lindeberg, Staffan (2009). "Modern human physiology with respect to evolutionary adaptations that relate to diet in the past". In Hublin, Jean-Jacques; & Richards, Michael P. The Evolution of Hominin Diets: Integrating Approaches to the Study of Paleolithic Subsistence. Springer. ISBN 978-1-4020-9698-3.

Cordain, Loren (2006). "Implications of Plio-Pleistocene Hominin Diets for Modern Humans (PDF)". In Ungar, Peter S. Evolution of the Human Diet: The Known, the Unknown, and the Unknowable. Oxford, USA: Oxford University Press. pp. 363–83. ISBN 0-19-518346-0.

Cordain L, Watkins BA, Florant GL, Kelher M, Rogers L, Li Y (March 2002). "Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease". European Journal of Clinical Nutrition 56 (3): 181–91. doi:10.1038/sj.ejcn.1601307. PMID 11960292.

Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J (1 August 2005). "Reply to SC Cunnane" (PDF). The American Journal of Clinical Nutrition 82 (2): 483–84. PMID 16087997.

Eaton, S. Boyd (2006). "Pre-agricultural Diets and Evolutionary Health Promotion". In Peter Ungar. Evolution of the Human Diet: The Known, the Unknown, and the Unknowable. Oxford, USA: Oxford University Press. p. 400. ISBN 0-19-518346-0.

Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD (1 March 2000). "Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets". The American Journal of Clinical Nutrition 71 (3): 682–92. PMID 10702160.

Cordain L, Eaton SB, Miller JB, Mann N, Hill K (March 2002). "The paradoxical nature of hunter-gatherer diets: meat based, yet non-atherogenic" (PDF). European Journal of Clinical Nutrition 56 (Suppl 1): S42–52. doi:10.1038/sj.ejcn.1601353. PMID 11965522.

Eaton SB, Eaton SB 3rd, Konner MJ (1997). "Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications" (PDF). European Journal of Clinical Nutrition 51 (4): 207–16. doi:10.1038/sj.ejcn.1600389. PMID 9104571.

Eaton SB, Cordain L, Eaton SB (2001). "An evolutionary foundation for health promotion" (PDF). World Review of Nutrition and Dietetics. World Review of Nutrition and Dietetics 90: 5–12. doi:10.1159/000059815. ISBN 3-8055-7211-5. PMID 11545045.

Frank W Booth et al. (2002). "Exercise and gene expression: physiological regulation of the human genome through physical activity". J Physiol 543 (Pt 2): 399–411. doi:10.1113/jphysiol.2002.019265. PMC 2290514. PMID 12205177.

Cordain L et al. (1998). "Physical activity, energy expenditure and fitness: an evolutionary perspective". International Journal of Sports Medicine.

S. Boyd Eaton et al. (2009). "Evolution, body composition, insulin receptor competition, and insulin resistance". Preventive Medicine.

Eaton, SB; Eaton, SB (2003). "An evolutionary perspective on human physical activity: Implications for health". Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 136 (1): 153–9. doi:10.1016/S1095-6433(03)00208-3. PMID 14527637.

Ströhle, Alexander; Wolters, Maike; Hahn, Andreas (January 2007). "Carbohydrates and the diet–atherosclerosis connection—More between earth and heaven. Comment on the article 'The atherogenic potential of dietary carbohydrate'". Preventive Medicine 44 (1): 82–4. doi:10.1016/j.ypmed.2006.08.014. PMID 16997359.

Gray, Russell D. (2001). "Selfish genes or developmental systems?". In Singh, Rama S.; Krimbas, Costas B.; Paul, Diane B.; & Beatty, John. Thinking about Evolution: Historical, Philosophical and Political Perspectives. Cambridge: Cambridge University Press. pp. 184–207. ISBN 0-521-62070-8.

Santos, J. L.; Saus, E.; Smalley, S. V.; Cataldo, L. R.; Alberti, G.; Parada, J.; Gratacòs, M.; Estivill, X. (2012). "Copy Number Polymorphism of the Salivary Amylase Gene: Implications in Human Nutrition Research". Journal of Nutrigenetics and Nutrigenomics 5 (3): 117–131. doi:10.1159/000339951. PMID 22965187. edit

Wilson, David S. (1994). "Adaptive genetic variation and human evolutionary psychology". Ethology and Sociobiology 15 (4): 219–35. doi:10.1016/0162-3095(94)90015-9.

Kopp, Wolfgang (January 2007). "Reply to the comment of Ströhle et al". Preventive Medicine 44 (1): 84–5. doi:10.1016/j.ypmed.2006.09.003.

Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK (December 2007). "Recent acceleration of human adaptive evolution". Proc Natl Acad Sci U S A 104 (52): 20753–8. doi:10.1073/pnas.0707650104. PMC 2410101. PMID 18087044.

Mahner, Martin; & Bunge, Mario (2001). "Function and functionalism: a synthetic perspective". Philosophy of Science 68 (1): 75–94. doi:10.1086/392867.

Ströhle, Alexander; & Hahn, Andreas (2006). "Evolutionary nutrition science and dietary recommendations of the Stone Age—The ideal answer to present-day nutritional questions or reason for criticism? Part 1: Concept, arguments and paleoanthropological findings" (PDF). Ernährungs-Umschau (in German) 53 (1): 10–16. Abstract (in English)

Milton, Katharine; & Demment, Montague W. (1 September 1988). "Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data" (PDF). Journal of Nutrition 118 (9): 1082–88. PMID 2843616.

Milton, Katharine (June 1999). "Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us?" (PDF). Nutrition 15 (6): 488–98. doi:10.1016/S0899-9007(99)00078-7. PMID 10378206.

Milton, Katharine (1999). "A hypothesis to explain the role of meat-eating in human evolution" (PDF). Evolutionary Anthropology 8 (1): 11–21. doi:10.1002/(SICI)1520-6505(1999)8:1<11::AID-EVAN6>3.0.CO;2-M.

Milton, Katharine (2000). "Back to basics: why foods of wild primates have relevance for modern human health". Nutrition 16 (7–8): 481–83. doi:10.1016/S0899-9007(00)00293-8. PMID 10906529.

Piperno, D; Weiss, E., Hols, I., Nadel, D (2004). "Processing of wild cereal grains in the Upper Paleolithic revealed by starch grain analysis". Nature 430 (7000): 670–673. doi:10.1038/nature02734. PMID 15295598.

Aranguren, B; Becattani, R., Lippi, M.M., Revedin, A (2007). "Grinding flour in Upper Paleolithic Europe (25 000 years bp)". Antiquity 81: 845–855.

Revedin, Anna; Aranguren, B; Becattini, R; Longo, L; Marconi, E; Lippi, MM; Skakun, N; Sinitsyn, A et al. (2010). "Thirty thousand-year-old evidence of plant food processing". Proc Natl Acad Sci U S A 107 (44): 18815–9. doi:10.1073/pnas.1006993107. PMC 2973873. PMID 20956317.

Julio Mercader (2009) 'Mozambican Grass Seed Consumption During the Middle Stone Age', Science, 18 December 2009.

Murphy, D (2007). People, Plants and Genes: The Story of Crops and Humanity. Oxford: Oxford University Press. ISBN 0-19-920713-5.

Marlowe FW (2005). "Hunter-gatherers and human evolution". Evolutionary Anthropology 14 (2): 15294. doi:10.1002/evan.20046.

African Bone. Tools Dispute Key Idea About Human Evolution. National Geographic News article.

Collins, Desmond (1973). Background to archaeology: Britain in its European setting (Revised ed.). Cambridge University Press. ISBN 0-521-20155-1.

Donna Hart, Robert W. Sussman. Man the Hunted. ISBN 0-8133-3936-7.

Leslie C. Aiello, Peter Wheeler (1995). "The expensive-tissue hypothesis". Current Anthropology.

Kris-Etherton, PM; Harris, WS; Appel, LJ; Nutrition, Committee (2003). "Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease". Arteriosclerosis, thrombosis, and vascular biology 23 (2): e20–30. doi:10.1161/01.ATV.0000038493.65177.94. PMID 12588785.

Crawford, M. A. et al. (1999). "Evidence for the Unique Function of Docosahexaenoic Acid (DHA) During the Evolution of the Modern Hominid Brain". Lipids: S39–S47.

Cordain, L.; Watkins, B. A.; Mann, N. J. (2001). "Fatty acid composition and energy density of foods available to African hominids: evolutionary implications for human brain development". World Review of Nutrition and Dietetics: 144–161.

Fairweather-Tait, Susan J. (October 29, 2003). "Human nutrition and food research: opportunities and challenges in the post-genomic era". Phil. Trans. R. Soc. B 358 (1438): 1709–27. doi:10.1098/rstb.2003.1377. PMC 1693270. PMID 14561328.

Jönsson T, Olsson S, Ahrén B, Bøg-Hansen TC, Dole A, Lindeberg S (2005). "Agrarian diet and diseases of affluence – Do evolutionary novel dietary lectins cause leptin resistance?". BMC Endocrine Disorders 5: 10. doi:10.1186/1472-6823-5-10. PMC 1326203. PMID 16336696.

Leach, Jeff D. (2007). "Prebiotics in Ancient Diet". Food Science and Technology Bulletin 4 (1): 1–8. doi:10.1616/1476-2137.14801.

Collins, Christopher (January–March 2007). "Said Another Way: Stroke, Evolution, and the Rainforests: An Ancient Approach to Modern Health Care". Nursing Forum 42 (1): 39–44. doi:10.1111/j.1744-6198.2007.00064.x. PMID 17257394.

Bellisari A. (March 2008). "Evolutionary origins of obesity". Obesity Reviews 9 (2): 165–180. doi:10.1111/j.1467-789X.2007.00392.x. PMID 18257754.

Strandvik, B. Eriksson, S. Garemo, M. Palsdottir, V. Samples, S. Pickova, J (March 4, 2008). "Is the relatively low intake of omega-3 fatty acids in Western diet contributing to the obesity epidemics?". Lipid Technology 20 (3): 57–59. doi:10.1002/lite.200800009.

Wood LE (October 2006). "Obesity, waist–hip ratio and hunter–gatherers". BJOG: an International Journal of Obstetrics & Gynaecology 113 (10): 1110–16. doi:10.1111/j.1471-0528.2006.01070.x. PMID 16972857.

O'Keefe JH Jr, Cordain L, Harris WH, Moe RM, Vogel R (June 2004). "Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal". Journal of the American College of Cardiology (American College of Cardiology) 43 (11): 2142–46. doi:10.1016/j.jacc.2004.03.046. PMID 15172426.

O'Keefe JH Jr, Cordain L, Jones PG, Abuissa H. (July 2006). "Coronary artery disease prognosis and C-reactive protein levels improve in proportion to percent lowering of low-density lipoprotein". The American Journal of Cardiology 98 (1): 135–39. doi:10.1016/j.amjcard.2006.01.062. PMID 16784936.

Kopp, Wolfgang (May 2006). "The atherogenic potential of dietary carbohydrate". Preventive Medicine 42 (5): 336–42. doi:10.1016/j.ypmed.2006.02.003. PMID 16540158.

Tekol, Yalcin (April 2008). "Maternal and infantile dietary salt exposure may cause hypertension later in life". Birth Defects Research Part B: Developmental and Reproductive Toxicology 83 (2): 77–79. doi:10.1002/bdrb.20149. PMID 18330898.

Dedoussis GV, Kaliora AC, Panagiotakos DB (Spring 2007). "Genes, Diet and Type 2 Diabetes Mellitus: A Review". Review of Diabetic Studies 4 (1): 13–24. doi:10.1900/RDS.2007.4.13. PMC 1892523. PMID 17565412.

Haag, Marianne; & Dippenaar, Nola (2005). "Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection". Medical Science Monitor 11 (12): RA359–367. PMID 16319806.

Sebastian A, Frassetto LA, Sellmeyer DE, Merriam RL, Morris RC Jr (1 December 2002). "Estimation of the net acid load of the diet of ancestral pre-agricultural Homo sapiens and their hominid ancestors". The American Journal of Clinical Nutrition 76 (6): 1308–16. PMID 12450898.

Morris RC Jr, Schmidlin O, Frassetto LA, Sebastian A (June 2006). "Relationship and interaction between sodium and potassium". Journal of the American College of Nutrition 25 (3): 262S–70S. PMID 16772638.

Cordain, Loren (1999). "Cereal grains: humanity's double-edged sword" (PDF). World review of nutrition and dietetics. World Review of Nutrition and Dietetics 84: 19–73. doi:10.1159/000059677. ISBN 3-8055-6827-4. PMID 10489816.

Bostick, Roberd M. (2001). "Diet and nutrition in the etiology and primary prevention of colon cancer". In Bendich, Adrianne; Deckelbaum, Richard J. Preventive Nutrition: The Comprehensive Guide for Health Professionals. Humana Press. pp. 47–98. ISBN 0-89603-911-0.

Lawlor, Debbie A; & Ness, Andy R (April 2003). "Commentary: The rough world of nutritional epidemiology: Does dietary fibre prevent large bowel cancer?". International Journal of Epidemiology 32 (2): 239–43. doi:10.1093/ije/dyg060. PMID 12714543.

Leach, Jeff D. (January 2007). "Evolutionary perspective on dietary intake of fibre and colorectal cancer". European Journal of Clinical Nutrition 61 (1): 140–42. doi:10.1038/sj.ejcn.1602486. PMID 16855539.

Cordain L, Eaton SB, Brand Miller J, Lindeberg S, Jensen C (April 2002). "An evolutionary analysis of the etiology and pathogenesis of juvenile-onset myopia". Acta Ophthalmologica Scandinavica 80 (2): 125–35. doi:10.1034/j.1600-0420.2002.800203.x. PMID 11952477.

Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J (December 2002). "Acne vulgaris: a disease of Western civilization". Archives of Dermatology 138 (12): 1584–90. doi:10.1001/archderm.138.12.1584. PMID 12472346.

Cordain, Loren (June 2005). "Implications for the role of diet in acne" (PDF). Seminars in Cutaneous Medicine and Surgery 24 (2): 84–91. doi:10.1016/j.sder.2005.04.002. PMID 16092796.

Cordain, Loren (2006). "Dietary implications for the development of acne: a shifting paradigm (PDF)". In Bedlow, J. US Dermatology Review 2006—Issue II. London: Touch Briefings Publications.

Keri, Jonette E; Nijhawan, Rajiv (August 2008). "Diet and acne". Expert Review of Dermatology 3 (4): 437–40. doi:10.1586/17469872.3.4.437.

Volker, Dianne; & NG, Jade (November 2006). "Depression: Does nutrition have an adjunctive treatment role?". Nutrition & Dietetics 63 (4): 213–226. doi:10.1111/j.1747-0080.2006.00109.x.

Cunnane, Stephen C. (1 August 2005). "Origins and evolution of the Western diet: implications of iodine and seafood intakes for the human brain". The American Journal of Clinical Nutrition 82 (2): 483; author reply 483–4. PMID 16087997.

Solomons, Noel W (2008). "National food fortification: a dialogue with reference to Asia: balanced advocacy". Asia Pacific Journal of Clinical Nutrition 17 (Suppl 1): 20–3. PMID 18296293.

Friis, Henrik (February 2007). "International nutrition and health". Danish Medical Bulletin 54 (1): 55–7. PMID 17349228.

Mann, Neil (September 2007). "Meat in the human diet: an anthropological perspective" (PDF). Nutrition & Dietetics 64 (4): S102–S107. doi:10.1111/j.1747-0080.2007.00194.x.

Cordain L, Miller JB, Eaton SB, Mann N (1 December 2000). "Macronutrient estimations in hunter-gatherer diets". The American Journal of Clinical Nutrition 72 (6): 1589–92. PMID 11101497.

Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, Yancy WS, Phinney SD (1 August 2007). "Low-carbohydrate nutrition and metabolism". The American Journal of Clinical Nutrition 86 (2): 276–84. PMID 17684196.

Colagiuri, Stephen; & Brand-Miller, Jennie (March 2002). "The 'carnivore connection'—evolutionary aspects of insulin resistance" (PDF). European Journal of Clinical Nutrition 56 (1): S30–5. doi:10.1038/sj.ejcn.1601351. PMID 11965520.

Plaskett, L. G. (September 2003). "On the Essentiality of Dietary Carbohydrate". Journal of Nutritional & Environmental Medicine 13 (3): 161–168. doi:10.1080/13590840310001619405.

Pérez-Guisado, J (2008). "Ketogenic diets: Additional benefits to the weight loss and unfounded secondary effects". Archivos latinoamericanos de nutricion 58 (4): 323–9. PMID 19368291.

Westman, EC; Yancy Jr, WS; Mavropoulos, JC; Marquart, M; McDuffie, JR (2008). "The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus". Nutrition & metabolism 5: 36. doi:10.1186/1743-7075-5-36. PMC 2633336. PMID 19099589.

Ungar, Peter S.; Grine, Frederick E.; & Teaford, Mark F. (October 2006). "Diet in Early Homo: A Review of the Evidence and a New Model of Adaptive Versatility". Annual Review of Anthropology 35 (1): 209–228. doi:10.1146/annurev.anthro.35.081705.123153.

Nestle, Marion (March 2000). "Paleolithic diets: a sceptical view". Nutrition Bulletin 25 (1): 43–7. doi:10.1046/j.1467-3010.2000.00019.x.

Milton, Katharine (March 1 2000). "Hunter-gatherer diets—A different perspective". The American Journal of Clinical Nutrition 71 (3): 665–67. PMID 10702155.

Milton, Katharine; Miller, JB; Eaton, SB; Mann, N (1 December 2000). "Reply to L Cordain et al" (PDF). The American Journal of Clinical Nutrition 72 (6): 1590–92. PMID 11101497.

Walker, Alexander RP (1 February 2001). "Are health and ill-health lessons from hunter-gatherers currently relevant?". The American Journal of Clinical Nutrition 73 (2): 353–56. PMID 11157335.

Cordain, Loren (2006). "Saturated fat consumption in ancestral human diets: implications for contemporary intakes". In Meskin, Mark S.; Bidlack, Wayne R.; & Randolph, R. Keith. Phytochemicals: Nutrient-Gene Interactions. CRC Press. pp. 115–26. ISBN 0-8493-4180-9.

Simopoulos, Artemis P. (2006). "Evolutionary aspects of diet, the omega-6:omega-3 ratio, and gene expression". In Meskin, Mark S.; Bidlack, Wayne R.; & Randolph, R. Keith. Phytochemicals: Nutrient-Gene Interactions. CRC Press. pp. 137–160. ISBN 0-8493-4180-9.

Mann, NJ; Ponnampalam, EN; Yep, Y; Sinclair, AJ (2003). "Feeding regimes affect fatty acid composition in Australian beef cattle". Asia Pacific journal of clinical nutrition. 12 Suppl: S38. PMID 15023647. edit

Longe, Jacqueline L. (2007). The Gale Encyclopedia of Diets: A Guide to Health and Nutrition. Gale Cengage. ISBN 1-4144-2991-6.

Ströhle, A.; Hahn, A.; Sebastian, A. (2010). "Estimation of the diet-dependent net acid load in 229 worldwide historically studied hunter-gatherer societies". The American journal of clinical nutrition 91 (2): 406–412. doi:10.3945/ajcn.2009.28637. PMID 20042527. edit

Prentice, A. M.; Jebb, S. A. (2003). "Fast foods, energy density and obesity: A possible mechanistic link". Obesity Reviews 4 (4): 187–94. doi:10.1046/j.1467-789X.2003.00117.x. PMID 14649369.

Bell, Elizabeth A; Castellanos, Victoria H; Pelkman, Christine L; Thorwart, Michelle L; Rolls, Barbara J (1998). "Energy density of foods affects energy intake in normal-weight women". The American Journal of Clinical Nutrition 67 (3): 412–20. PMID 9497184.

Drewnowski, Adam; Darmon, Nicole (2005). "The economics of obesity: Dietary energy density and energy cost". The American Journal of Clinical Nutrition 82 (1 Suppl): 265S–273S. PMID 16002835.

Ello-Martin, Julia A; Roe, Liane S; Ledikwe, Jenny H; Beach, Amanda M; Rolls, Barbara J (2007). "Dietary energy density in the treatment of obesity: A year-long trial comparing 2 weight-loss diets". The American Journal of Clinical Nutrition 85 (6): 1465–77. PMC 2018610. PMID 17556681.

Heaney, Robert P. (2001). "Calcium intake and the prevention of chronic disease". In Wilson, Ted; Temple, Norman J. Nutritional Health: Strategies for Disease Prevention. Humana Press. pp. 31–50. ISBN 0-89603-864-5.

Heaney, Robert P. (August 2006). "Calcium intake and disease prevention". Arquivos Brasileiros de Endocrinologia & Metabologia 50 (4): 685–693. doi:10.1590/S0004-27302006000400014.

Heaney, Robert P. (2006). "Calcium metabolism". In Schulz, Richard. Encyclopedia of Aging: A Comprehensive Resource in Gerontology and Geriatrics. Springer. pp. 146–147. ISBN 0-8261-4843-3.

"Dietary Supplement Fact Sheet: Vitamin D". Office of Dietary Supplements (ODS). National Institutes of Health (NIH). Retrieved 2010-04-11.

Paul Insel, Don Ross, Kimberley McMahon, Melissa Bernstein (2010). Nutrition. p. 410. ISBN 0-7637-7663-7.

S. Boyd Eaton, Stanley B. Eaton III, Andrew J. Sinclair, Loren Cordain, Neil J.
Mann (1998). "Dietary intake of long-chain polyunsaturated fatty acids during the Paleolithic". World Rev Nutr Diet.

Foster-Powell K, Holt SH, Brand-Miller J (1 July 2002). "International table of glycemic index and glycemic load values: 2002". The American Journal of Clinical Nutrition 76 (1): 5–56. PMID 12081815.

Liljeberg Elmståhl H.; & Björck, Inger ME (2001). "Milk as a supplement to mixed meals may elevate postprandial insulinaemia" (PDF). European journal of clinical nutrition 55 (11): 994–99. doi:10.1038/sj.ejcn.1601259. PMID 11641749.

Hoyt G, Hickey MS, Cordain L (2005). "Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk". British Journal of Nutrition 93 (2): 175–77. doi:10.1079/BJN20041304. PMID 15788109.

Glucose dense processed (junk) food is absorbed fast, high glucose in blood is not oxidised that quickly so free radicals are released which cause inflammation of linings of blood vessels which is a stated reason for atherosclerosis and cardiovascular diseases, hence the importance of fibre rich food. Cordain L, Eades MR, Eades MD (2003). "Hyperinsulinemic diseases of civilization: more than just Syndrome X". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 136 (1): 95–112. doi:10.1016/S1095-6433(03)00011-4. PMID 14527633.

Frassetto LA, Morris RC Jr, Sellmeyer DE, Sebastian A (February 2008). "Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American diets". Journal of Nutrition 138 (2): 419S–22S. PMID 18203914.

Remer, T.; Manz, F. (1995). "Potential Renal Acid Load of Foods and its Influence on Urine pH". Journal of the American Dietetic Association 95 (7): 791–797. doi:10.1016/S0002-8223(95)00219-7. PMID 7797810. edit

Uriel S. Barzel and Linda K. Massey (1998). "Excess Dietary Protein Can Adversely Affect Bone". The Journal of Nutrition 128 (6): 1051–1053.

Frassetto, L. A.; Morris Jr, R. C.; Sebastian, A. (2006). "A practical approach to the balance between acid production and renal acid excretion in humans". Journal of nephrology. 19 Suppl 9: S33–S40. PMID 16736439. edit

Larsen, Clark Spencer (1 November 2003). "Animal source foods and human health during evolution". Journal of Nutrition 133 (11, Suppl 2): 3893S–3897S. PMID 14672287.

Hermanussen, Michael; Poustka, Fritz (July–September 2003). "Stature of early Europeans". Hormones (Athens) 2 (3): 175–8. doi:10.1159/000079404. PMID 17003019.

Eaton, S. Boyd; Cordain, Loren; & Sebastian, Anthony (2007). "The Ancestral Biomedical Environment (PDF)". In Aird, William C. Endothelial Biomedicine. Cambridge University Press. pp. 129–34. ISBN 0-521-85376-1.

Eaton SB, Konner M, Shostak M (April 1988). "Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective" (PDF). The American Journal of Medicine 84 (4): 739–49. doi:10.1016/0002-9343(88)90113-1. PMID 3135745.

Eaton, S. Boyd & Eaton, Stanley. B 3rd (1999). "The evolutionary context of chronic degenerative diseases". In Stearns, Stephen C. Evolution in health and disease. Oxford: Oxford University Press. pp. 251–59. ISBN 0-19-850445-4.

Trowell, Hugh C. & Burkett, Denis P. (1981). Western diseases: their emergence and prevention. Cambridge, MA: Harvard University Press. xiii–xvi. ISBN 0-674-95020-8.

Lindeberg S, Eliasson M, Lindahl B, Ahrén B (October 1999). "Low serum insulin in traditional Pacific Islanders—The Kitava study". Metabolism 48 (10): 1216–19. doi:10.1016/S0026-0495(99)90258-5. PMID 10535381.

Solomons, Noel W. (1 March 2000). "Book Review—Evolutionary Aspects of Nutrition and Health: Diet, Exercise, Genetics and Chronic Disease". The American Journal of Clinical Nutrition 71 (3): 854–55.

Cannon, Geoffrey (August 2007). "Drugs and bugs, and other stories [Out of the Box]". Public Health Nutrition 10 (8): 758–61. doi:10.1017/S1368980007770568.

Olshansky, S. Jay; Carnes, Bruce A. (2002). The Quest for Immortality: Science at the Frontiers of Aging. W. W. Norton & Company. pp. 188–191. ISBN 0-393-32327-7.

Leach, Jeff D. (2007). "Paleo Longevity Redux (Letters to the Editor)". Public Health Nutrition 10 (11). doi:10.1017/S1368980007814492.

Michael Gurven, Hillard Kaplan. "Longevity Among Hunter-Gatherers: A Cross-Cultural Examination".

Leonard, William R. (December 2002). "Food for thought: Dietary change was a driving force in human evolution". Scientific American 287 (6): 106–15. PMID 12469653.

Uauy, Ricardo; & Díaz, Erik (October 2005). "Consequences of food energy excess and positive energy balance". Public Health Nutrition 8 (7A): 1077–99. doi:10.1079/PHN2005797. PMID 16277821.

Jönsson T, Ahrén B, Pacini G, Sundler F, Wierup N, Steen S, Sjöberg T, Ugander M, Frostegård J, Göransson L, Lindeberg S (2006). "A Paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs". Nutrition & Metabolism 3 (39): 39. doi:10.1186/1743-7075-3-39. PMC 1635051. PMID 17081292.

Jönsson T, Granfeldt Y, Erlanson-Albertsson C, Ahrén B, Lindeberg S (November 2010). "A Paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease" (PDF). Nutr Metab (Lond) 7 (1): 85. doi:10.1186/1743-7075-7-85. PMC 3009971. PMID 21118562.

Jonsson T, Granfeldt Y, Ahren B, Branell UC, Palsson G, Hansson A, Lindeberg S (2009). "Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study". Cardiovascular Diabetology 8 (1): 35–49. doi:10.1186/1475-2840-8-35. PMC 2724493. PMID 19604407. NCT00548782 Paleolithic Diet and Exercise Study NCT00692536 Diet Composition - Metabolic Regulation and Long-term Compliance (KNOTA) NCT00360516 Paleolithic Diet and Exercise Study

Osterdahl M, Kocturk T, Koochek A, Wändell PE (May 2008). "Effects of a short-term intervention with a Paleolithic diet in healthy volunteers". European Journal of Clinical Nutrition 62 (5): 682–85. doi:10.1038/sj.ejcn.1602790. PMID 17522610.

NHS Knowledge Service (May 9, 2008). "Caveman fad diet". NHS Choices. Retrieved August 1, 2008.

"Best Diets Overall". U.S.News & World Report. 2012.

"Paleo Diet". U.S.News & World Report. 2012.

Lindeberg, Staffan (2010). Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Chichester, UK.: Wiley-Blackwell. ISBN 1-4051-9771-4. OCLC 435728298.

Debunking the Paleo Diet: Scam or Fad-diet? by Christina Warinner at TEDx- Food Documentaries

No comments:

Post a Comment

Disclosure | Disclaimer |Comments Policy |Terms of Use | Privacy Policy| Blog Sitemap



The information contained herein is provided as a public service with the understanding that this site makes no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information. Nor does warrant that the use of this information is free of any claims of copyright infringement. This site do not endorse any commercial providers or their products.


Culinary Physics Blog: Exceptional food that worth a special journey. Distinctive dishes are precisely prepared, using fresh ingredients. And all other foods that can kill you. Culinary Physics is a Molecular Gastronomy blog specializing in molecular gastronomy recipes-food style, molecular book review, molecular gastronomy kit review and molecular gastronomy restaurants guide.


Culinary Physics Blog is your comprehensive source of Australian cuisine recipes, Austrian cuisine recipes, Brazilian cuisine recipes, Caribbean cuisine recipes, Chinese cuisine recipes, Cuban cuisine recipes, East African cuisine recipes, English cuisine recipes, French cuisine recipes, German cuisine recipes, Greek cuisine recipes, Hungarian cuisine recipes, Indian cuisine recipes, Indonesian cuisine recipes, Israeli cuisine recipes, Italian cuisine recipes, Japanese cuisine recipes, Korean cuisine recipes, Lebanese cuisine recipes, Mexican cuisine recipes, North African cuisine recipes, Norwegian cuisine recipes, Philippine cuisine recipes, Polish cuisine recipes, Russian cuisine recipes, South American cuisine recipes, Spanish cuisine recipes, Thai cuisine recipes, Turkish cuisine recipes, Vietnamese cuisine recipes and West African cuisine recipes.


2011- 2016 All Rights Reserved. Culinary Physics Blog